學任何一門功課,都不能只有三分鐘熱度,而要一鼓作氣,天天堅持,久而久之,不論是狀元還是伊人,都會向你招手。下面就是小編給大家帶來的高中數學學業水平考知識點,希望能幫助到大家!
高中數學學業水平考知識點1
數學函數區間的概念
(1)函數區間的分類:開區間、閉區間、半開半閉區間
(2)無窮區間
5.映射
一般地,設A、B是兩個非空的函數,如果按某一個確定的對應法則f,使對于函數A中的任意一個元素x,在函數B中都有確定的元素y與之對應,那么就稱對應f:AB為從函數A到函數B的一個映射。記作“f(對應關系):A(原象)B(象)”
對于映射f:A→B來說,則應滿足:
(1)函數A中的每一個元素,在函數B中都有象,并且象是的;
(2)函數A中不同的元素,在函數B中對應的象可以是同一個;
(3)不要求函數B中的每一個元素在函數A中都有原象。
6.高中數學函數之分段函數
(1)在定義域的不同部分上有不同的解析表達式的函數。
(2)各部分的自變量的取值情況.
(3)分段函數的定義域是各段定義域的交集,值域是各段值域的并集.
補充:復合函數
如果y=f(u)(u∈M),u=g(x)(x∈A),則y=f[g(x)]=F(x)(x∈A)稱為f、g的復合函數。
高中數學學業水平考知識點2
1.進行集合的交、并、補運算時,不要忘了全集和空集的特殊情況,不要忘記了借助數軸和文氏圖進行求解.
2.在應用條件時,易A忽略是空集的情況
3.你會用補集的思想解決有關問題嗎?
4.簡單命題與復合命題有什么區別?四種命題之間的相互關系是什么?如何判斷充分與必要條件?
5.你知道“否命題”與“命題的否定形式”的區別.
6.求解與函數有關的問題易忽略定義域優先的原則.
7.判斷函數奇偶性時,易忽略檢驗函數定義域是否關于原點對稱.
8.求一個函數的解析式和一個函數的反函數時,易忽略標注該函數的定義域.
9.原函數在區間[-a,a]上單調遞增,則一定存在反函數,且反函數也單調遞增;但一個函數存在反函數,此函數不一定單調.例如:.
10.你熟練地掌握了函數單調性的證明方法嗎?定義法(取值,作差,判正負)和導數法
高中數學學業水平考知識點3
1、導數的定義:在點處的導數記作.
2.導數的幾何物理意義:曲線在點處切線的斜率
①k=f/(x0)表示過曲線y=f(x)上P(x0,f(x0))切線斜率。V=s/(t)表示即時速度。a=v/(t)表示加速度。
3.常見函數的導數公式:
4.導數的四則運算法則:
5.導數的應用:
(1)利用導數判斷函數的單調性:設函數在某個區間內可導,如果,那么為增函數;如果,那么為減函數;
注意:如果已知為減函數求字母取值范圍,那么不等式恒成立。
(2)求極值的步驟:
①求導數;
②求方程的根;
③列表:檢驗在方程根的左右的符號,如果左正右負,那么函數在這個根處取得極大值;如果左負右正,那么函數在這個根處取得極小值;
(3)求可導函數值與最小值的步驟:
ⅰ求的根;ⅱ把根與區間端點函數值比較,的為值,最小的是最小值。
高中數學學業水平考知識點4
等差數列
對于一個數列{an},如果任意相鄰兩項之差為一個常數,那么該數列為等差數列,且稱這一定值差為公差,記為d;從第一項a1到第n項an的總和,記為Sn。
那么,通項公式為,其求法很重要,利用了“疊加原理”的思想:
將以上n-1個式子相加,便會接連消去很多相關的項,最終等式左邊余下an,而右邊則余下a1和n-1個d,如此便得到上述通項公式。
此外,數列前n項的和,其具體推導方式較簡單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再復述。
值得說明的是,前n項的和Sn除以n后,便得到一個以a1為首項,以d/2為公差的新數列,利用這一特點可以使很多涉及Sn的數列問題迎刃而解。
等比數列
對于一個數列{an},如果任意相鄰兩項之商(即二者的比)為一個常數,那么該數列為等比數列,且稱這一定值商為公比q;從第一項a1到第n項an的總和,記為Tn。
那么,通項公式為(即a1乘以q的(n-1)次方,其推導為“連乘原理”的思想:
a2=a1_q,
a3=a2_q,
a4=a3_q,
````````
an=an-1_q,
將以上(n-1)項相乘,左右消去相應項后,左邊余下an,右邊余下a1和(n-1)個q的乘積,也即得到了所述通項公式。
此外,當q=1時該數列的前n項和Tn=a1_n
當q≠1時該數列前n項的和Tn=a1_(1-q^(n))/(1-q).
高中數學學業水平考知識點5
反比例函數
形如y=k/x(k為常數且k≠0)的函數,叫做反比例函數。
自變量x的取值范圍是不等于0的一切實數。
反比例函數圖像性質:
反比例函數的圖像為雙曲線。
由于反比例函數屬于奇函數,有f(-x)=-f(x),圖像關于原點對稱。
另外,從反比例函數的解析式可以得出,在反比例函數的圖像上任取一點,向兩個坐標軸作垂線,這點、兩個垂足及原點所圍成的矩形面積是定值,為∣k∣。
如圖,上面給出了k分別為正和負(2和-2)時的函數圖像。
當K>0時,反比例函數圖像經過一,三象限,是減函數
當K<0時,反比例函數圖像經過二,四象限,是增函數
反比例函數圖像只能無限趨向于坐標軸,無法和坐標軸相交。
知識點:
1.過反比例函數圖象上任意一點作兩坐標軸的垂線段,這兩條垂線段與坐標軸圍成的矩形的面積為|k|。
2.對于雙曲線y=k/x,若在分母上加減任意一個實數(即y=k/(x±m)m為常數),就相當于將雙曲線圖象向左或右平移一個單位。(加一個數時向左平移,減一個數時向右平移)
上一篇:2020高二數學水平考知識點歸納
下一篇:數學學業水平考高中知識點歸納