數學探索題,所謂探索題就是從問題給定的題設條件中探究其相應的結論并加以證明,或從給定的題目要求中探究相應的必需具備的條件、解決問題的途徑。下面給大家分享一些關于數學思維訓練技巧,希望對大家有幫助。
數學思維訓練技巧
善于運用發現法,啟發學生的思維
發現法是一種啟發式的教學方法,它的理論產生于二十世紀五十年代,形成于六、七十年代,是目前新課程改革下,廣大教師廣泛應用的教學方法。要畫圓了,老師不講畫法,讓學生先去畫,滿足他們操作圓規的好奇心,讓學生自己去發現畫圓的方法和步驟。整節課,學生的思維都處于興奮狀態之中,人人有動手操作、用眼觀察、動口說理、動腦思維的機會,學生自己觀察發現問題,積極探索得出結論,教學效果好。
構建平等和諧的教學環節,啟迪學生的思維
蘇霍姆林斯基說過:“成功的歡樂是一種巨大的情緒力量。”這啟示我們教師在教學中必須放下師道尊嚴的架子,到學生中去,用對學生信任、充滿激情的對話和語言,創設一種平等、和諧的教學環境,讓學生在愉快、寬松自由的氛圍中學習,讓每個學生都能抬起頭來體驗這種學習中的成功。例如,在課堂上我們可以多一些這樣的話語,“你的回答很有創意!”“你真了不起,發現了小秘密!”……這些充滿激情、充滿鼓勵的評價,讓孩子們放松了緊張、焦慮的情緒,保護了學生學習的積極性,使他們覺得學習數學是快樂的,逐漸地喜愛上數學,從而最大限度發揮學生的潛能,促進學生積極主動的進行思維活動。
重視直觀教學,培養學生的思維
培養學生的邏輯思維能力,首先要根據他們的思維能力特點,憑借實物、模型、操作和語言的直觀,在引導學生對各種數學現象進行具體形象感知的基礎上,進行理性的抽象概括、推理判斷等。學具操作是一種外部的物質化活動,其特殊性在于操作活動能引起和促進學生借助于手的活動能夠實現和反映其內部的思維活動,在推進學生思維內化的過程中起著十分重要的作用,因此,教師必須重視直觀的教學。“操作是智力的源泉、思維的起點”,啟迪學生積極思維,操作是首要的第一步。通過多種感官去感知事物,去獲取感性知識,去比較、分析、綜合、抽象出事物的本質,得出概念、法則,找出解決問題的方法。
數學中的思維方法
函數與方程的思維:函數與方程的思維是中學數學最基本的思維。所謂函數的思維是指用運動變化的觀點去分析和研究數學中的數量關系,建立函數關系或構造函數,再運用函數的圖像與性質去分析、解決相關的問題。而所謂方程的思維是分析數學中的等量關系,去構建方程或方程組,通過求解或利用方程的性質去分析解決問題。
數形結合的思維:數與形在一定的條件下可以轉化。如某些代數問題、三角問題往往有幾何背景,可以借助幾何特征去解決相關的代數三角問題;而某些幾何問題也往往可以通過數量的結構特征用代數的方法去解決。因此數形結合的思維對問題的解決有舉足輕重的作用。
分類討論的思維:分類討論的思維之所以重要,原因一是因為它的邏輯性較強,原因二是因為它的知識點的涵蓋比較廣,原因三是因為它可培養學生的分析和解決問題的能力。原因四是實際問題中常常需要分類討論各種可能性。解決分類討論問題的關鍵是化整為零,在局部討論降低難度。常見的類型:由數學概念引起的的討論,如實數、有理數、絕對值、點(直線、圓)與圓的位置關系等概念的分類討論。
鍛煉數學思維的竅門
運用比較辨別,啟迪學生思維想象
如在教學了數的整除的知識后,我出示了這樣一道例題:“一個大于10的數,被6除余4,被8除余2,被9除余1,這個數最小是幾?”應該說這道題是有一定的難度的,學生求解會感到無從下手,這時,我出示了這樣一題比較題:“一個數被6除余10,被8除余10,被9除余10,這個數最小是幾?”這道題學生很快能求出答案:這個數即是6、8和9的最小公倍數多10,6、8和9的最小公倍數為72,因此這個數為:72+10=82;
然后我引導學生將上面一道例題與這道比較題進行比較和思考,學生很快知道,上道題只要假設被6除少商1余數即為10,被8除少商1余數也為10、被9除時少商1余數也為10,因此可迅速求得這個數只要減去10,就同時能被6、8和9整除,而6、8和9的最小公倍數為72,因此這個數為:72+10=82 。這樣通過讓學生展開聯想和比較,不但可以提高學生的想象能力,同時也能提高學生的創新思維能力。
通過分析歸納,培養學生創新思維
又如在教學平面圖形的面積計算公式后,我要求學生歸納出一個能概括各個平面圖形面積計算的公式,我讓學生進行討論,經過討論,學生們歸納出,在小學階段學過的面積公式都可以用梯形的面積計算公式來進行概括,因為梯形的面積計算公式是:(上底 +下底)×高÷2 。而長方形、正方形、平行四邊形的上底和下底相等,即可將這公式變成:底(長、邊長)×高(寬、邊長)×2÷2 = 底(長、邊長)×高(寬、邊長);
又因為圓面積公式是根據長方形的面積公式推導出來的,因此,梯形的面積公式對圓也同樣適用;當梯形的上底是零時,即梯形成了一個三角形,這時梯形的面積公式成了:底×高÷2。這即成了三角形的面積公式。這樣,不僅使學生能熟練掌握已學過的平面圖形的面積公式,同時,也培養和提高了學生的創新能力。
數學思維訓練技巧有哪些相關文章:
★ 總結學好數學方法和技巧有哪些
★ 總結數學的學習方法及技巧有哪些
★ 如何訓練數學思維邏輯思維能力
★ 初中數學思維能力的培養辦法
★ 2021高三復習資料大全
★ 如何培養初中數學思維能力及培養辦法
★ 抽象思維能力培養及數學的抽象思維能力訓練辦法
★ 高一數學精選學習方法分享
★ 培養幼兒數學思維能力辦法
★ 高一數學學習方法歸納精選5篇
上一篇:提升邏輯思維能力的方法
下一篇:怎樣訓練邏輯思維能力