重視數學公式。有很多人數學學不好就是因為對概念和公式不夠重視,表現為對數學概念的理解只是停留在表明,不去理解消化,對數學概念的特殊情況不明白。下面是小編整理的必修一數學重點知識點總結,僅供參考希望能夠幫助到大家。
必修一數學重點知識點總結
一、集合有關概念
1.集合的含義
2.集合的中元素的三個特性:
(1)元素的確定性如:世界上的山
(2)元素的互異性如:由HAPPY的字母組成的集合{H,A,P,Y}
(3)元素的無序性:如:{a,b,c}和{a,c,b}是表示同一個集合
3.集合的表示:{…}如:{我校的籃球隊員},{太平洋,大西洋,印度洋,北冰洋}
(1)用拉丁字母表示集合:A={我校的籃球隊員},B={1,2,3,4,5}
(2)集合的表示方法:列舉法與描述法。
注意:常用數集及其記法:XKb1.Com
非負整數集(即自然數集)記作:N
正整數集:Nx或N+
整數集:Z
有理數集:Q
實數集:R
1)列舉法:{a,b,c……}
2)描述法:將集合中的元素的公共屬性描述出來,寫在大括號內表示集合{x?R|x-3>2},{x|x-3>2}
3)語言描述法:例:{不是直角三角形的三角形}
4)Venn圖:
4、集合的分類:
(1)有限集含有有限個元素的集合
(2)無限集含有無限個元素的集合
(3)空集不含任何元素的集合例:{x|x2=-5}
二、集合間的基本關系
1.“包含”關系—子集
注意:有兩種可能
(1)A是B的一部分,;
(2)A與B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,記作AB或BA
2.“相等”關系:A=B(5≥5,且5≤5,則5=5)實
例:設A={x|x2-1=0}B={-1,1}“元素相同則兩集合相等”
即:
①任何一個集合是它本身的子集。AíA
②真子集:如果AíB,且A1B那就說集合A是集合B的真子集,記作AB(或BA)
③如果AíB,BíC,那么AíC
④如果AíB同時BíA那么A=B
3.不含任何元素的集合叫做空集,記為Φ
規定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集個數:
有n個元素的集合,含有2n個子集,2n-1個真子集,含有2n-1個非空子集,含有2n-1個非空真子集
三、集合的運算
運算類型交集并集補集
定義由所有屬于A且屬于B的元素所組成的集合,叫做A,B的交集.記作AB(讀作‘A交B’),即AB={x|xA,且xB}.
由所有屬于集合A或屬于集合B的元素所組成的集合,叫做A,B的并集.記作:AB(讀作‘A并B’),即AB={x|xA,或xB}).
基本初等函數
一、指數函數
(一)指數與指數冪的運算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈x.
當是奇數時,正數的次方根是一個正數,負數的次方根是一個負數.此時,的次方根用符號表示.式子叫做根式(radical),這里叫做根指數(radicalexponent),叫做被開方數(radicand).
當是偶數時,正數的次方根有兩個,這兩個數互為相反數.此時,正數的正的次方根用符號表示,負的次方根用符號-表示.正的次方根與負的次方根可以合并成±(>0).由此可得:負數沒有偶次方根;0的任何次方根都是0,記作。
注意:當是奇數時,當是偶數時,
2.分數指數冪
正數的分數指數冪的意義,規定:
0的正分數指數冪等于0,0的負分數指數冪沒有意義
指出:規定了分數指數冪的意義后,指數的概念就從整數指數推廣到了有理數指數,那么整數指數冪的運算性質也同樣可以推廣到有理數指數冪.
3.實數指數冪的運算性質
(二)指數函數及其性質
1、指數函數的概念:一般地,函數叫做指數函數(exponential),其中x是自變量,函數的定義域為R.
注意:指數函數的底數的取值范圍,底數不能是負數、零和1.
函數的應用
1、函數零點的概念:對于函數,把使成立的實數叫做函數的零點。
2、函數零點的意義:函數的零點就是方程實數根,亦即函數的圖象與軸交點的橫坐標。即:
方程有實數根函數的圖象與軸有交點函數有零點.
3、函數零點的求法:
求函數的零點:
(1)(代數法)求方程的實數根;
(2)(幾何法)對于不能用求根公式的方程,可以將它與函數的圖象聯系起來,并利用函數的性質找出零點.
4、二次函數的零點:
二次函數.
1)△>0,方程有兩不等實根,二次函數的圖象與軸有兩個交點,二次函數有兩個零點.2)△=0,方程有兩相等實根(二重根),二次函數的圖象與軸有一個交點,二次函數有一個二重零點或二階零點.
3)△<0,方程無實根,二次函數的圖象與軸無交點,二次函數無零點.
數學直線和圓知識點
1.直線傾斜角與斜率的存在性及其取值范圍;直線方向向量的意義(或)及其直線方程的向量式((為直線的方向向量)).應用直線方程的點斜式、斜截式設直線方程時,一般可設直線的斜率為k,但你是否注意到直線垂直于x軸時,即斜率k不存在的情況?
2.知直線縱截距,常設其方程為或;知直線橫截距,常設其方程為(直線斜率k存在時,為k的倒數)或知直線過點,常設其方程為.
(2)直線在坐標軸上的截距可正、可負、也可為0.直線兩截距相等 直線的斜率為-1或直線過原點;直線兩截距互為相反數 直線的斜率為1或直線過原點;直線兩截距絕對值相等 直線的斜率為 或直線過原點.
(3)在解析幾何中,研究兩條直線的位置關系時,有可能這兩條直線重合,而在立體幾何中一般提到的兩條直線可以理解為它們不重合.
3.相交兩直線的夾角和兩直線間的到角是兩個不同的概念:夾角特指相交兩直線所成的較小角,范圍是。而其到角是帶有方向的角,范圍是
4.線性規劃中幾個概念:約束條件、可行解、可行域、目標函數、最優解.
5.圓的方程:最簡方程 ;標準方程 ;
6.解決直線與圓的關系問題有“函數方程思想”和“數形結合思想”兩種思路,等價轉化求解,重要的是發揮“圓的平面幾何性質(如半徑、半弦長、弦心距構成直角三角形,切線長定理、割線定理、弦切角定理等等)的作用!”
(1)過圓 上一點 圓的切線方程
過圓 上一點 圓的切線方程
過圓 上一點 圓的切線方程
如果點在圓外,那么上述直線方程表示過點 兩切線上兩切點的“切點弦”方程.
如果點在圓內,那么上述直線方程表示與圓相離且垂直于(為圓心)的直線方程, (為圓心 到直線的距離).
7.曲線與的交點坐標方程組的解;
過兩圓交點的圓(公共弦)系為,當且僅當無平方項時,為兩圓公共弦所在直線方程.
數學學習思維方法
1代數思想
這是基本的數學思想之一 ,小學階段的設未知數x,初中階段的一系列的用字母代表數,這都是代數思想,也是代數這門學科最基礎的根!
2數形結合
是數學中最重要的,也是最基本的思想方法之一,是解決許多數學問題的有效思想。“數缺形時少直觀,形無數時難入微”是我國著名數學家華羅庚教授的名言,是對數形結合的作用進行了高度的概括。初高中階段有很多題都涉及到數形結合,比如說解題通過作幾何圖形標上數據,借助于函數圖象等等都是數形給的體現。
3轉化思想
在整個初中數學中,轉化(化歸)思想一直貫穿其中。轉化思想是把一個未知(待解決)的問題化為已解決的或易于解決的問題來解決,如化繁為簡、化難為易,化未知為已知,化高次為低次等,它是解決問題的一種最基本的思想,它是數學基本思想方法之一。
必修一數學重點知識點總結相關文章:
★ 高一年級數學必修1知識點整理
★ 人教版高一數學必修一必考知識點總結分享五篇
★ 人教版高一數學必修一知識點精選歸納5篇
★ 高考數學必考知識歸納整理大全
★ 高二數學知識點重點梳理歸納5篇
★ 高三數學重要知識點總結五篇
★ 高一數學必修一知識點梳理五篇分享
★ 高中數學必修二知識點總結
★ 2021高考數學考點歸納大全
★ 高中高考數學必備知識點匯集2021
上一篇:必修二數學知識點總結
下一篇:數學必修一知識點筆記