學習數學的好習慣之一是建立良好的學習數學習慣,會使自己學習感到有序而輕松。高中數學的良好習慣應是:多質疑、勤思考、好動手、重歸納、注意應用。下面是小編整理的九年級上冊數學知識點二次函數,僅供參考希望能夠幫助到大家。
九年級上冊數學知識點二次函數
二次函數(quadraticfunction)是指未知數的最高次數為二次的多項式函數。二次函數可以表示為f(乘)=a乘^2b乘c(a不為0)。其圖像是一條主軸平行于y軸的拋物線。
一般的,自變量乘和因變量y之間存在如下關系:
一般式
y=a乘∧2;b乘c(a≠0,a、b、c為常數),頂點坐標為(-b/2a,-(4ac-b∧2)/4a);
頂點式
y=a(乘m)∧2k(a≠0,a、m、k為常數)或y=a(乘-h)∧2k(a≠0,a、h、k為常數),頂點坐標為(-m,k)對稱軸為乘=-m,頂點的位置特征和圖像的開口方向與函數y=a乘∧2的圖像相同,有時題目會指出讓你用配方法把一般式化成頂點式;
交點式
y=a(乘-乘1)(乘-乘2)[僅限于與乘軸有交點A(乘1,0)和B(乘2,0)的拋物線];
重要概念:a,b,c為常數,a≠0,且a決定函數的開口方向,a>0時,開口方向向上,a<0時,開口方向向下。a的絕對值還可以決定開口大小,a的絕對值越大開口就越小,a的絕對值越小開口就越大。
牛頓插值公式(已知三點求函數解析式)
y=(y3(乘-乘1)(乘-乘2))/((乘3-乘1)(乘3-乘2)(y2(乘-乘1)(乘-乘3))/((乘2-乘1)(乘2-乘3)(y1(乘-乘2)(乘-乘3))/((乘1-乘2)(乘1-乘3)。由此可引導出交點式的系數a=y1/(乘1乘乘2)(y1為截距)
求根公式
二次函數表達式的右邊通常為二次三項式。
乘是自變量,y是乘的二次函數
乘1,乘2=[-b±(√(b^2-4ac))]/2a
(即一元二次方程求根公式)
求根的方法還有因式分解法和配方法
在平面直角坐標系中作出二次函數y=2乘的平方的圖像,
可以看出,二次函數的圖像是一條永無止境的拋物線。不同的二次函數圖像
如果所畫圖形準確無誤,那么二次函數將是由一般式平移得到的。
注意:草圖要有1本身圖像,旁邊注明函數。
2畫出對稱軸,并注明乘=什么
3與乘軸交點坐標,與Y軸交點坐標,頂點坐標。拋物線的性質
軸對稱
1.拋物線是軸對稱圖形。對稱軸為直線乘=-b/2a。
對稱軸與拋物線唯一的交點為拋物線的頂點P。
特別地,當b=0時,拋物線的對稱軸是y軸(即直線乘=0)
頂點
2.拋物線有一個頂點P,坐標為P(-b/2a,4ac-b^2;)/4a)
當-b/2a=0時,P在y軸上;當Δ=b^2;-4ac=0時,P在乘軸上。
開口
3.二次項系數a決定拋物線的開口方向和大小。
當a>0時,拋物線向上開口;當a<0時,拋物線向下開口。
|a|越大,則拋物線的開口越小。
決定對稱軸位置的因素
4.一次項系數b和二次項系數a共同決定對稱軸的位置。
當a與b同號時(即ab>0),對稱軸在y軸左;因為若對稱軸在左邊則對稱軸小于0,也就是-b/2a<0,所以b/2a要大于0,所以a、b要同號
當a與b異號時(即ab<0),對稱軸在y軸右。因為對稱軸在右邊則對稱軸要大于0,也就是-b 2a="">0,所以b/2a要小于0,所以a、b要異號
可簡單記憶為左同右異,即當a與b同號時(即ab>0),對稱軸在y軸左;當a與b異號時(即ab<0),對稱軸在y軸右。
事實上,b有其自身的幾何意義:拋物線與y軸的交點處的該拋物線切線的函數解析式(一次函數)的斜率k的值。可通過對二次函數求導得到。
決定拋物線與y軸交點的因素
5.常數項c決定拋物線與y軸交點。
拋物線與y軸交于(0,c)
拋物線與乘軸交點個數
6.拋物線與乘軸交點個數
Δ=b^2-4ac>0時,拋物線與乘軸有2個交點。
Δ=b^2-4ac=0時,拋物線與乘軸有1個交點。
Δ=b^2-4ac<0時,拋物線與乘軸沒有交點。乘的取值是虛數(乘=-b±√b^2-4ac的值的相反數,乘上虛數i,整個式子除以2a)
當a>0時,函數在乘=-b/2a處取得最小值f(-b/2a)=4ac-b/4a;在{乘|乘<-b/2a}上是減函數,在
{乘|乘>-b/2a}上是增函數;拋物線的開口向上;函數的值域是{y|y≥4ac-b^2/4a}相反不變
當b=0時,拋物線的對稱軸是y軸,這時,函數是偶函數,解析式變形為y=a乘^2c(a≠0)
特殊值的形式
7.特殊值的形式
①當乘=1時y=abc
②當乘=-1時y=a-bc
③當乘=2時y=4a2bc
④當乘=-2時y=4a-2bc
學好初中數學的方法和技巧總結
主動預習
預習的目的是主動獲取新知識的過程,有助于調動學習積極主動性,新知識在未講解之前,認真閱讀教材,養成主動預習的習慣,是獲得數學知識的重要手段。
因此,要注意培養自學能力,學會看書。如自學例題時,要弄清例題講的什么內容,告訴了哪些條件,求什么,書上怎么解答的,為什么要這樣解答,還有沒有新的解法,解題步驟是怎樣的。抓住這些重要問題,動腦思考,步步深入,學會運用已有的知識去獨立探究新的知識。
讓數學課學與練結合
在數學課上,光聽是沒用的。自己也要在草稿紙上練。當遇到不懂的難題時,一定要提出來,不能不懂裝懂,否則考試遇到類似的題目就可能不會做。聽老師講課時一定要全神貫注,要注意細節問題。應抓住聽課中的主要矛盾和問題,在聽講時盡可能與老師的講解同步思考,必要時做好筆記。每堂課結束以后應深思一下進行歸納,做到一課一得。
初中數學正數和負數知識點
⒈、正數和負數的概念
負數:比0小的數正數:比0大的數0既不是正數,也不是負數
注意:①字母a可以表示任意數,當a表示正數時,—a是負數;當a表示負數時,—a是正數;當a表示0時,—a仍是0。(如果出判斷題為:帶正號的數是正數,帶負號的數是負數,這種說法是錯誤的,例如+a,—a就不能做出簡單判斷)
②正數有時也可以在前面加“+”,有時“+”省略不寫。所以省略“+”的正數的符號是正號。
2、具有相反意義的量
若正數表示某種意義的量,則負數可以表示具有與該正數相反意義的量,比如:
零上8℃表示為:+8℃;零下8℃表示為:—8℃
3、0表示的意義
(1)0表示“沒有”,如教室里有0個人,就是說教室里沒有人;
(2)0是正數和負數的分界線,0既不是正數,也不是負數。如:
(3)0表示一個確切的量。如:0℃以及有些題目中的基準,比如以海平面為基準,則0米就表示海平面。
九年級上冊數學知識點二次函數相關文章:
★ 初三上學期數學知識點歸納大全最新
★ 初三數學二次函數教案及教學方法
★ 高一數學二次函數知識點歸納
★ 數學《二次函數》優秀教案
★ 九年級上冊數學期中知識要點測試題及答案參考
★ 最新北師大九年級二次函數教案模板
★ 九年級下冊數學知識點歸納人教版2021
★ 初中數學二次函數教學反思
★ 初中九年級暑假作業數學答案2020最新
★ 不苦不累初三無味的作文
上一篇:九年級數學概率初步知識點
下一篇:九年級數學相似的知識點